Jikakedua akar x 1 dan x 2 saling berlawanan maka berlaku. x 1 = -x 2. sehingga. x 1 + x 2 = 0. Dengan mengingat x 1 + x 2 = -b/a maka. atau. b = 0. Jadi jika persamaan kuadrat memiliki b = 0 maka akar-akarnya saling berlawanan . Contoh 1 : x 2 - 9 = 0 (x + 3)(x — 3) = 0. x = -3 atau x = 3. Jadi nilai k yang memenuhi adalah k = 3 saja
Kelas 9 SMPPERSAMAAN KUADRATAkar Persamaan KuadratJika a dan b akar-akar persamaan kuadrat x^2 + x - 3 = 0, maka 2a^2 + b^2 + a =0 A. 10 D. 6 B. 9 E. 4 C. 7Akar Persamaan KuadratPERSAMAAN KUADRATALJABARMatematikaRekomendasi video solusi lainnya0244Jika akar-akar persamaan kuadrat 2x^2 + 5x - 3 = 0 adalah...0314Persamaan 2x^3 + 3x^2 + px + 8 = 0 mempunyai sepasang aka...0153Jika nilai diskriminan persamaan kuadrat 2x^2 - 9x + C = ...Teks videokita punya soal tentang persamaan kuadrat maka kita punya persamaan kuadratnya adalah x kuadrat + X min 3 sama dengan nol dikatakan akar-akarnya adalah a dengan kita bisa mencari sifat-sifat akar-akar persamaan kuadrat itu kita bisa cari jumlahnya dinyanyikan akarnya alham AB Berarti jumlahnya adalah a + b dengan rumusnya adalah minus dari koefisien X yaitu 1 di sini kan kalau semester 1 ya dibagi dengan koefisien x kuadrat yaitu 1 juga maka disinilah Soalnya ada minus 1 sedangkan a dikali B itu bisa didapat dari konstanta yang ada di belakang nih jadi beraktifitas 3 dibagi denganKoefisien x kuadrat juga Makasih Mi A1 jadi hasilnya adalah minus 3. Nah ini sebagai catatan kita buat misalkan bentuk umum persamaan kuadrat adalah a x kuadrat + QX + R = 0. Misalkan akar-akarnya adalah Alfa dan Beta maka disini kita bisa cari alfa + beta dengan rumus Min Q per P ya minus koefisien X koefisien x kuadrat lalu Alfa kali beta itu dengan rumus konstanta gas cl2 koefisien x kuadrat bertype mengerti yang tadi Nah sampai disini jadi kita udah punya a + b dengan a * b misalkan 2 a kuadrat + b kuadrat + 2 kuadrat ini bisa kita pecah jadi aquadrat ditambah kuadrat jadi kita buat dua kuadratnya Kita pisah jadi aku ada tidak a kuadrat ya lalu ditambah b kuadrat ditambah a di sini aku adalah dengan a. Kita tukarPindahkan nanya ke sini gitu ya. Jadi kita punya aquadrat ditambah a baru ditambah dengan a kuadrat lagi ditambah b. Kuadrat jadi kita coba tukar posisi aja gitu. Nah sekarang kita boleh urungkan karena ini tandanya kalau saya Jadi boleh kita turunkan sekarang di soal kita lihat kalau dikatakan a ini adalah akar-akar persamaan kuadrat maka kita subtitusi kedalam jadi kalau kita subtitusi kedalam kita dapatkan a kuadrat ditambah a dikurang 3 hasilnya adalah 0. Jadi hanya kita statusnya itu boleh harus memenuhi Justru karena adalah akarnya jadi pasti mau nolongin kalau di situ si sebagai F Nah kalau kita pindahkan - 3 nya ke kanan jadinya positif jadi kita punya 3 Nah kita udah punya nilai a kuadrat ditambah adalah jadi kita bisa subtitusi ke sini Jadi 3 a kuadrat + a = a kuadrat + b kuadrat kitaJuga udah hafal a kuadrat + b kuadrat itu adalah bentuk dari a. + b yang dikuadratkan dikurang 2 ab ya ini a + b kalau dikuadratkan lalu dikurang 2 ab hasilnya akan menjadi a kuadrat + b kuadrat min x kuadrat yang tahu namanya kita Perbaiki lah maka disini kita bisa subtitusi aja nilai a + b x min 1 dikali 3 ditambah dalam kurung minus 1 yang dikuadratkan dikurang 2 dikali ABC dimana AB adalah minus 3 plus minus 3 minus 1 dikuadratkan hasilnya adalah 1 ya. Halo minus 2 x minus 3 min x min 7 + 2 * 3 / 6 maka 3 + 1 + 7 + 10 adalah yang a sampai di sini. Semoga teman-teman mengerti sampai jumpa Rizal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Jikaakar-akar persamaan kuadrat x 2 + 3x - 7 = 0 adalah α dan β. Maka persamaan kuadrat yang akar-akarnya (α + 2) dan (β + 2) adalah A. x 2 - x - 9 = 0 B. x 2 - x + 9 = 0 C. x 2 + x - 9 = 0 D. x 2 + 9x - 1 = 0 E. x 2 - 9x + 1 = 0. Penyelesaian soal / pembahasan. α + β = - 3 dan α . β = -7 x 2 - (x 1 + x 2)x + x 1. x 2 = 0 BerandaJika a dan b akar-akar persamaan kuadrat x 2 − a...PertanyaanJika dan akar-akar persamaan kuadrat dan maka ...FFF. Freelancer9Master TeacherPembahasanIngat konsep jumlah dan hasil kali akar dari Diketahui maka diperoleh . sehingga jika dan akar-akar persamaan kuadrat maka Karena sehingga diperoleh Karena maka Jadi .Ingat konsep jumlah dan hasil kali akar dari Diketahui maka diperoleh . sehingga jika dan akar-akar persamaan kuadrat maka Karena sehingga diperoleh Karena maka Jadi . Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!3rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia ii Menghitung akar-akar persamaan kuadrat Penyelesaian: 2x² + 5x + 3 = 0 Berdasarkan bentuk umum, dapat diketahui komponen penyusun persamaan tersebut a = 2, b = 5, dan c = 3 i) Kesamaan Bentuk 2x² + 5x + 3 = 0 ∗ Menentukan Pasangan Perkalian dan Penjumlahan * Menyusun Kesamaan Bentuk Persamaan Kuadrat
A. Pengertian Persamaan Kuadrat atau Quadratic Equation Persamaan kuadrat adalah bentuk persamaan matematika dengan derajat dua, sehingga mempunyai suku dengan variabel berpangkat dua. Dalam bahasa inggris persamaan kuadrat disebut dengan "Quadratic Equation". Suatu persamaan disebut persamaan kuadrat saat mempunyai suku dengan pangkat variabel tertinggi dua. Navigasi Cepat A. Pengertian Persamaan Kuadrat B. Bentuk Umum C. Akar-Akar Persamaan Kuadrat D. Cara Menghitung Akar Persamaan Kuadrat D1. Faktorisasi D2. Melengkapi Kuadrat Sempurna D3. Rumus ABC D4. Solusi Nol Persamaan ax² = 0 E. Persamaan Kuadrat sebagai Model Non-Linier Berikut bentuk umum rumus persamaan kuadrat. dengan a = koefisien variabel x² b = koefisien variabel x c = nilai suatu konstanta dengan a ≠ 0 Bentuk di atas juga disebut dengan bentuk kuadrat trinomial, karena mempunyai 3 istilah suku yang berbeda dalam persamaannya. Berikut tabel contoh yang menyatakan suatu bentuk kuadrat Contoh Ya/Tidak Penjelasan 2x² + 3x + 2 = 0 Ya a = 2; b = 3; c = 0 x² + x - 1 = 0 Ya a = 1; b = 1; c = -1 -3x² + 2 = 0 Ya a = -3; b = 0; c = 2 2x² + 3x = 0 Ya a = 2; b = 3; c = 0 3x² = 3 Ya berderajat 2 3x² + 4x² = 0 Ya berderajat 2 3x + 4 = 0 Tidak berderajat 1 3x² + 3x³ Tidak berderajat 3 Dari tabel di atas dapat diketahui suatu persamaan disebut persamaan kuadrat, jika persamaan tersebut berderajat dua. Baca juga Materi Aljabar, Bentuk Aljabar, dan Operasi Aljabar C. Akar-Akar Persamaan Kuadrat Akar-akar persamaan kuadrat adalah solusi penyelesaian dari suatu bentuk persamaan kuadrat, berupa nilai-nilai faktor persamaannya. Sehingga hasil substitusi akar-akarnya akan menghasilkan nilai nol terhadap persamaannya tidak bersisa. Persamaan kuadrat ax² + bx + c umumnya mempunyai 2 akar-akar persamaan yaitu x1 dan x2. Nilai akar-akar persamaan kuadrat di koordinat kartesius merupakan titik potong grafiknya di sumbu x. Ini dapat dibuktikan dengan substitusi nilai tersebut yang akan menghasilkan nilai nol. Grafik fungsi kuadrat dari y = x² + 6x + 8 = 0 Sebagai contoh, fungsi kuadrat y = x² + 6x + 8 = 0 mempunyai akar-akar x = -4 dan x = -2. Berikut hasil substitusi nilai akar-akarnya dalam fungsi kuadrat tersebut. Berikut substitusi nilai akar-akarnya terhadap fungsi y Substitusi x = -4 maka y = -4² + 6-4 + 8 = 0 titik -4,0 Substitusi x = -2 maka y = -2² + 6-2 + 8 = 0 titik -2,0 D. Cara Mencari Akar Persamaan Kuadrat Terdapat beberapa metode yang digunakan untuk mencari akar persamaan kuadrat. Berikut dijelaskan 3 metode yang sering digunakan untuk mencari akar persamaan kuadrat yaitu faktorisasi aljabar, melengkapi kuadrat sempurna, dan rumus ABC. D1. Faktorisasi Persamaan Kuadrat Faktorisasi persamaan kuadrat adalah dekomposisi persamaan kuadrat dengan menggunakan faktor-faktornya. Dekomposisi persamaan adalah pengubahan susunan dan struktur suatu bentuk persamaan menjadi bentuk baru yang sebanding. Faktorisasi trinomial adalah metode umum yang digunakan untuk melakukan faktorisasi persamaan kuadrat. Metode ini bekerja dengan mencari pasangan perkalian dan penjumlahan dari nilai a, b, dan c. Rumus Faktorisasi Bentuk Umum Trinomial Terdapat beberapa bentuk kuadrat yang tidak mempunyai nilai b atau c, gunakan nilai nol dalam rumus, berikut contohnya. Persamaan a b c 2x² + 3x - 4 = 0 2 3 -4 4x² + 3x = 0 4 3 0 25x² + 9 = 0 25 0 9 Tips terdapat beberapa metode faktorisasi alternatif selain metode trinomial, yang dapat digunakan untuk mempercepat perhitung bentuk persamaan kuadrat tertentu. Faktorisasi Contoh Persamaan Kuadrat Bentuk Umum Trinomial 6x² + 11x – 10 = 3x – 22x + 5 Kuadrat Murni Pure Quadratic 6x² + 9x = 3x2x + 3 Selisih Kuadrat Difference of Squares 9x² – 16y² = 3x – 4y3x + 4y Lebih lanjut Faktorisasi Trinomial, Selisih Kuadrat, dan Kuadrat Murni Alternatif Solusi Irasional atau Kompleks Penggunaan metode faktorisasi dapat menjadi sulit untuk menghitung pasangan perkalian atau penjumlahan, karena solusinya merupakan bilangan irasional dan kompleks. Kasus ini dapat dipermudah dengan menggunakan metode melengkapi kuadrat sempurna atau rumus ABC yang dijelaskan di bagian bawah. Baca juga Apa itu Bilangan Irasional dan Bilangan Kompleks? Contoh 1. Faktorisasi Persamaan Kuadrat x² + 6x + 8 = 0 Buat kesamaan bentuk dari persamaan kuadrat x² + 6x + 8 = 0 dan hitung akar persamaan kuadratnya! Diketahui x² + 6x + 8 = 0 Ditanya i Kesamaan bentuk persamaan kuadrat ii Menghitung akar-akar persamaan kuadrat Penyelesaian x² + 6x + 8 = 0 Berdasarkan bentuk umum, dapat diketahui komponen penyusun persamaan tersebut. a = 1, b = 6, dan c = 8 i Kesamaan Bentuk x² + 6x + 8 = 0 Catatan Penulisan angka 1 pada variabel x untuk memperjelas langkah, dalam praktiknya dapat tidak ditulis. ∗ Menentukan Pasangan Perkalian dan Penjumlahan * Menghitung Nilai Pasangan Perkalian dan Penjumlahan * Menyusun Kesamaan Bentuk Persamaan Kuadrat ∴ Jadi, kesamaan bentuknya adalah x + 2x + 4 = 0 ii Menghitung Akar Persamaan Kuadrat x² + 6x + 8 = 0 Dari pemaparan sebelumnya sudah diketahui bentuk kesamaannya berdasarkan faktorisasi yaitu x + 2x + 4 = 0. Sehingga diperoleh akar-akar persamaan kuadrat dengan memecah bentuk tersebut. ∴ Jadi, akar-akar persamaan kuadrat dari x² + 6x + 8 = 0 adalah x1 = -2 dan x2 = -4. Contoh 2. Faktorisasi Persamaan Kuadrat 2x² + 5x + 3 = 0 Buat kesamaan bentuk dari persamaan kuadrat 2x² + 5x + 3 = 0 dan hitung akar-akar penyelesaiannya! Diketahui 2x² + 5x + 3 = 0 Ditanya i Kesamaan bentuk persamaan kuadrat ii Menghitung akar-akar persamaan kuadrat Penyelesaian 2x² + 5x + 3 = 0 Berdasarkan bentuk umum, dapat diketahui komponen penyusun persamaan tersebut a = 2, b = 5, dan c = 3 i Kesamaan Bentuk 2x² + 5x + 3 = 0 ∗ Menentukan Pasangan Perkalian dan Penjumlahan * Menyusun Kesamaan Bentuk Persamaan Kuadrat ∴ Jadi, kesamaan bentuknya adalah x + 12x + 3 = 0 atau 2x + 3x+1 ii Menghitung Akar Persamaan Kuadrat 2x² + 5x + 3 = 0 Dari pemaparan sebelumnya sudah diketahui bentuk kesamaannya berdasarkan faktorisasi yaitu 2x + 3x + 1 = 0. Sehingga diperoleh akar-akar persamaan kuadrat dengan memecah bentuk tersebut. ∴ Jadi, akar-akar persamaan kuadrat dari 2x² + 5x + 3 = 0 adalah x1 = -1 dan x2 = -3/2. D2. Melengkapi Kuadrat Sempurna Melengkapi kuadrat sempurna adalah pengubahan bentuk suatu persamaan kuadrat ax2 + bx + c = 0 menjadi bentuk kuadrat sempurna a x + d2 + e = 0. Metode melengkapi kuadrat sempurna juga disebut dengan metode "completing the square". Untuk melengkapi persamaan kuadrat ke kuadrat sempurna perlu dihitung nilai d dan e yang memenuhinya. Rumus Melengkapi Kuadrat Sempurna Sehingga dapat dihitung akar-akarnya dengan melakukan perpindahan ruas antar variabel lalu di kuadratkan. Baca juga Materi Melengkapi Kuadrat Sempurna dan Konsep Geometri Kuadrat Sempurna Contoh 1. Kuadrat Sempurna dari x² + 6x + 8 = 0 Hitung akar-akar persamaan kuadrat x² + 6x + 8 = 0 dengan cara melengkapi kuadrat sempurna! Penyelesaian Kemudian dapat dihitung akar-akar persamaannya dari bentuk kuadrat sempurna di atas ∴ Jadi, akar-akar persamaan kuadrat dari x² + 6x + 8 = 0 adalah x1 = -2 dan x2 = -4. Contoh 2. Kuadrat Sempurna dari 2x² + 5x + 3 = 0 Hitung akar-akar persamaan 2x² + 5x + 3 = 0 dengan cara melengkapi kuadrat sempurna! Penyelesaian Kemudian dapat dihitung akar-akar persamaannya dari bentuk kuadrat sempurna di atas ∴ Jadi, akar-akar persamaan dari 2x² + 5x + 3 = 0 adalah x1 = -1 dan x2 = -3/2. Contoh 3. Kuadrat Sempurna dari x² + 2x - 1 = 0 Catatan Contoh ini akan lebih sulit jika dikerjakan dengan cara faktorisasi persamaan kuadrat. Hitung akar-akar persamaan x² + 2x - 1 = 0 dengan cara melengkapi kuadrat sempurna! Penyelesaian Kemudian dapat dihitung akar-akar persamaannya dari bentuk kuadrat sempurna di atas ∴ Jadi, akar-akar persamaan dari x² + 2x - 1 = 0 adalah x1 = 0,414213562 dan x2 = -2,414213562. D3. Rumus ABC Rumus ABC adalah rumus alternatif untuk mencari solusi akar-akar persamaan kuadrat menggunakan nilai a, b, dan c berdasarkan konsep penyempurnaan bentuk kuadrat. Jika ditelusuri lebih lanjut, rumus ini sebenarnya merupakan hasil dari metode completing the square melengkapi kuadrat sempurna. Baca juga Materi Rumus ABC, Perumusan, dan Contoh Soal Contoh 1. Hitung Akar Persamaan x² + 6x + 8 = 0 dengan Rumus ABC! Penyelesaian ∴ Jadi, akar-akar persamaan kuadrat dari x² + 6x + 8 = 0 adalah x1 = -2 dan x2 = -4. Contoh 2. Hitung Akar Persamaan x² + 2x - 1 = 0 dengan Rumus ABC! Penyelesaian ∴ Jadi, akar-akar persamaan kuadrat dari x² + 2x - 1 = 0 adalah x1 = 0,414213562 dan x2 = -2,414213562. D4. Solusi Nol Persamaan Kuadrat ax² = 0 Bentuk persamaan kuadrat ax² = 0 mempunyai solusi akar bernilai nol zero solution. Nilai solusi x1 = 0 dan x2 = 0 merupakan solusi umum persamaan kuadrat dengan bentuk ax² = 0, berikut pemaparannya. Hal ini juga dapat dibuktikan oleh grafik fungsinya dalam koordinat kartesius, maka akan memotong sumbu koordinat di titik 0, 0. Titik ini juga menjadi titik puncak grafik yang dibentuk. Contoh 1. Berapa solusi akar-akar persamaan kuadrat dari x² = 0; 2x² = 0; dan -3x² = 0 dan Buatkan grafik fungsinya? Penyelesaian Dapat diketahui titik x = 0 menghasilkan nilai y = 0 di ketiga fungsi kuadrat yang digambarkan dalam grafik, dilihat dari ketiga grafik yang memotong titik pusat 0, 0. ∴ Jadi, akar-akar ketiga persamaan kuadrat tersebut adalah x1,2 = 0. Lanjutan Fungsi Kuadrat dan Cara Membuat Grafik Fungsi Kuadrat E. Persamaan Kuadrat sebagai Pemodelan Non-Linier Bentuk variabel berpangkat dua menyebabkan persamaan kuadrat membentuk garis tidak lurus non-linier, umumnya berupa kurva. Pengaplikasiannya dapat dijadikan sebagai suatu model terhadap pemecahan kasus nyata. Beberapa contoh misalnya prediksi waktu, pengaturan resistor elektronika, hukum permintaan dalam ilmu ekonomi, dan lain-lain. Tutorial lainnya Daftar Isi Pelajaran Matematika Sekian artikel "Persamaan Kuadrat Rumus Umum, Akar Persamaan, & Contoh Soal". Nantikan artikel menarik lainnya dan mohon kesediaannya untuk share dan juga menyukai halaman Advernesia. Terima kasih...
Berdasarkanakar-akar persamaan kuadrat a x 2 + b x + c = 0 , persamaan kuadrat memiliki akar-akar maksimal sebanyak dua yaitu x 1 dan x 2 . Adapun jenis-jenis akar persamaan kuadratnya : (i). Jika D ≥ 0, maka kedua akarnya nyata (real) (ii). Jika D > 0, maka kedua akarnya nyata (real) dan berbeda (iii). Foto Hai Quipperian, bagaimana kabarnya? Semoga selalu sehat dan tetap semangat belajar, ya! Meskipun di rumah saja, jangan sia-siakan waktumu dengan hal-hal yang kurang bermanfaat. Tetaplah belajar, belajar, dan belajar. Jika kamu butuh teman untuk belajar, Quipper Blog siap menemanimu. Siapa yang hobi menonton sepak bola? Saat menonton sepak bola, tentu kamu pernah melihat sang pemain menendang bola dengan sudut tertentu sampai bola bisa membentuk lintasan parabola. Bagi seorang ilmuwan, lintasan bola yang berbentuk parabola tidak hanya sekadar lintasan biasa. Banyak besaran yang bisa ditentukan dari bentuk lintasan bola tersebut, contohnya sudut tendangan, kecepatan bola di titik tertinggi, dan lain-lain. Besaran itu semua bisa ditentukan melalui suatu fungsi yang disebut fungsi kuadrat. Nah, persamaannya disebut persamaan kuadrat. Ingin tahu bagaimana bentuk persamaan kuadrat? Check this out! Pengertian Persamaan Kuadrat Foto Persamaan kuadrat adalah persamaan yang variabelnya memiliki pangkat tertinggi sama dengan dua 2. Adapun bentuk umum persamaan kuadrat adalah sebagai berikut. ax2 + bx + c = 0 Keterangan a, b = koefisien a ≠ 0; x = variabel; dan c = konstanta. Jenis-Jenis Persamaan Kuadrat Foto Secara umum, persamaan kuadrat dibagi menjadi empat, yaitu sebagai berikut. 1. Persamaan Kuadrat Biasa Persamaan kuadrat biasa adalah persamaan kuadrat yang nilai a = 1. Berikut ini contohnya. x2 + 3x + 2 = 0 2. Persamaan Kuadrat Murni Persamaan kuadrat murni adalah persamaan kuadrat yang nilai b = 0. Berikut ini contohnya. x2 + 2 = 0 3. Persamaan Kuadrat Tak Lengkap Persamaan kuadrat tak lengkap adalah persamaan kuadrat yang nilai c = 0. Berikut ini contohnya. x2 + 3x = 0 4. Persamaan Kuadrat Rasional Persamaan kuadrat rasional adalah persamaan kuadrat yang nilai koefisien dan konstantanya berupa bilangan rasional. Berikut ini contohnya. 4x2 + 3x + 2 = 0 Cara Menentukan Akar Persamaan Kuadrat Foto Akar persamaan kuadrat merupakan salah satu faktor penting yang harus bisa kamu tentukan dalam penyelesaian persamaan kuadrat. Ada beberapa cara yang bisa kamu gunakan untuk mencari akar pada persamaan kuadrat, yaitu sebagai berikut. 1. Faktorisasi Faktorisasi adalah penjumlahan suku aljabar menjadi bentuk perkalian faktornya. Jika kamu melakukan faktorisasi persamaan kuadrat, artinya kamu membuat perkalian dua buah persamaan linear. ax2 + bx + c = 0 b = hasil penjumlahan antara suku ke-1 dan ke-2 c = hasil perkalian antara suku ke-1 dan ke-2 Perhatikan contoh berikut. Bentuk persamaan kuadrat x2 + 5x + 6 = 0 Bentuk faktorisasi x + 3 x + 2 = 0 Akar x = -3 atau x = -2 Bentuk persamaan kuadrat x2 – 9 = 0 Bentuk faktorisasi x – 3x + 3 = 0 Akar x = 3 atau x = -3 2. Melengkapkan Kuadrat Sempurna Bentuk ax2 + bx + c = 0 bisa kamu jabarkan menjadi seperti berikut. x + p2 = q Perhatikan contoh berikut. Bentuk persamaan kuadrat x2 + 5x + 6 = 0 x2 + 8x + 6 = 0 x2 + 8x = -6 x2 + 8x +16 = -6 +16 x + 42 = 10 x + 4 = ± √10 x = √10 – 4 atau x = -√10 – 4 3. Menggunakan Rumus abc Adapun persamaan rumus abc adalah sebagai berikut. Perhatikan contoh berikut. Tentukan akar persamaan x2 – 4x – 5 = 0! Diketahui a = 1, b = -4, dan c = -5 Substitusikan nilai a, b, dan c ke persamaan abc. Jadi, akar persamaan x2 – 4x – 5 = 0 adalah x = 5 atau x = -1. Jenis-Jenis Akar Persamaan Kuadrat Foto Sebelum membahas tentang jenis akar persamaan kuadrat, kamu akan dikenalkan terlebih dahulu dengan istilah diskriminan. Apa itu diskriminan? Diskriminan atau biasa dilambangkan D adalah hubungan antarkoefisien yang menentukan besar dan jenis akar persamaan kuadrat. Pada pembahasan sebelumnya, kamu sudah mengenal rumus abc, yaitu sebagai berikut. Dari persamaan di atas, besaran yang dimaksud diskriminan adalah b2 – 4ac. Dengan demikian, persamaan rumus abc menjadi seperti berikut. Nah, jenis akar persamaan kuadrat ternyata bergantung pada nilai dari determinannya D. Berikut ini penjelasannya. Jika nilai D > 0, maka suatu persamaan kuadrat akan memiliki dua akar real yang tidak sama besar x1 ≠ x2. Jika nilai D = 0, maka suatu persamaan kuadrat akan memiliki dua akar real dan kembar. Jika nilai D < 0, maka suatu persamaan kuadrat tidak memiliki akar real akarnya imajiner. Jika persamaan kuadrat ditulis dalam bentuk grafik, akan muncul grafik parabola seperti bentuk lintasan bola yang ditendang dengan kemiringan tertentu. Agar pemahamanmu semakin cling-cling, yuk simak contoh soal berikut. Contoh Soal 1 Berapakah akar persamaan kuadrat dari x2 + 9x + 18 = 0? Pembahasan Ingat bahwa konstanta 18 bisa dibentuk oleh hasil perkalian antara 6 dan 3. Hal itu karena penjumlahan antara 6 dan 3 menghasilkan 9 nilai b. Dengan demikian, berlaku x2 + 9x + 18 = 0 x + 6x + 3 = 0 x = -6 atau x = -3 Jadi, akar persamaan kuadrat x2 + 9x + 18 = 0 adalah -6 atau -3. Contoh Soal 2 Tentukan jenis akar persamaan kuadrat x2 + 16x + 64 = 0! Pembahasan Ingat, untuk menentukan jenis akar, kamu harus mencari nilai determinannya. x2 – 64 = 0 a = 1 b = 16 c = 64 D = 162 – 4 . 1 . -64 = 256 – 256 = 0 Oleh karena nilai D = 0, maka persamaan x2 + 16x + 64 = 0 memiliki dua akar yang kembar sama dan real. Contoh Soal 3 Tentukan akar persamaan 2x2 – 8x + 7 = 0 menggunakan rumus abc! Pembahasan Diketahui a = 2, b = -8, dan c = 7 Substitusikan nilai a, b, dan c ke persamaan abc. Jadi, akar persamaan 2x2 – 8x + 7 = 0 adalah 4,5 atau -1,5. Bagaimana Quipperian, mudah bukan? Semoga materi ini bisa bermanfaat buat kamu semua, ya. Tetap semangat belajar dan selalu jaga kesehatan serta kebersihan. Jika kamu bosan belajar sendirian, jadikan Quipper Video sebagai mitra yang menyenangkan. Di sana, kamu akan diajar oleh para tutor andal lewat video, rangkuman, dan latihan soal. Salam Quipper! [spoiler title=SUMBER] Penulis Eka Viandari
disini ada pertanyaan Jika a dan b adalah akar-akar persamaan kuadrat dari ini dan diberikan bahwa P + 2 B = 25 maka A min b nya berapa a dan b adalah akar-akar Nya maka a + b jadi X1 + X2 jadi kalau kita punya a kuadrat + b + c maka X1 kalau akar-akarnya adalah x1 dan x2 maka X1 + X2 min b per a 1 kali itu acara2 tidak Hal ini a + b nya adalah min b per A min min b b adalah koefisien dari x nya timin dari - 13 aPerkoppi tenis badannya 1 gadis ini adalah 13 a sehingga dari sini betenya.
Matematika. Sumber UnsplashSaat pelajaran matematika di sekolah menengah mungkin kamu pernah diajarkan mengenai akar persamaan kuadrat. Persamaan ini sering digunakan dalam ilmu perhitungan di bidang dasarnya, persamaan kuadrat merupakan bentuk persamaan yang variabelnya memiliki pangkat tertinggi sama dengan dua. Berdasarkan buku berjudul Matematika Kelas X yang ditulis Bornok Sinaga dkk., umumnya persamaan kuadrat dalam x adalah suatu persamaan yang berbentuk a, b, dan c bilangan riil dan a ≠ adalah variabel atau peubaha adalah koefisien dari x2b adalah koefisien dari xc adalah konstanta persamaanSementara, ciri-ciri persamaan kuadrat di antaranyaPangkat tertinggi peubahnya adalah 2 dan pangkat terendah adalah 0Koefisien variabelnya adalah bilangan riilKoefisien variabel berpangkat 2, tidak sama dengan nolKoefisien variabel berpangkat 1 dan 0 dapat bernilai 0Mengutip dari Jurnal Matematics Paedagogic Volume 2 Nomor 2 yang ditulis Indah Purnama Putri dkk., dalam menyelesaikan persamaan kuadrat dapat dilakukan dengan tiga cara tersebut antara lain pemfaktoran, membentuk kuadrat sempurna, dan rumus kuadrat rumus ABC. Berikut penjelasan Penyelesaian Akar Persamaan KuadratMenyadur dari buku yang ditulis Bornok Sinaga dkk., ketiga aturan tersebut memiliki kelebihan dan kekurangan. Salah satunya terkait dengan efisiensi waktu yang digunakan untuk menentukan akar-akar sebuah persamaan kuadrat. Tiga cara dalam penyelesaian akar persamaan kuadrat secara lengkap antara lain sebagai berikut akar-akar persamaan kuadrat 3z2 + 2z – 85 = 0 dengan cara pemfaktoran!3z2 + 2z – 85 = 1/3 9z2 + 6z - 255 = 01/3 9z2 + 317 - 15z + 17  -15 = 01/3 9z2 + 51z - 45z + 255 = 01/3 3z + 173z - 153z + 17 = 03z + 173z – 15 = 0 atau 3z + 17z – 5 = 0Harga-harga z yang memenuhi adalah z = -17/3 atau z = 5. Sehingga himpunan penyelesaian persamaan 3z2 + 2z - 85 = 0 adalah Hp = {-17/3, 5}.2. Cara Melengkapkan Kuadrat SempurnaMisalnya terdapat bentuk umum persamaan kuadrat ax2 + bx + c = 0, dengan a, b, c adalah bilangan real dan a ≠ 0. Untuk a = 1, berikut Matematika Kelas X/Bornok Sinaga terdapat bentuk umum persamaan kuadrat ax2 + bx + c = 0, dengan a, b, c adalah bilangan real dan a ≠ Matematika Kelas X/Bornok Sinaga dkk.
Persamaankuadrat adalah persamaan dengan pangkat peubah tertingginya dua. Bentuk umum persamaan kuadrat ax 2 + bx + c = 0, a tidak sama dengan 0. Akar persamaan kuadrat ax 2 + bx + c = 0 adalah nilai x yang memenuhi persamaan kuadrat tersebut. Silakan baca: Menentukan Jenis Akar Persamaan Kuadrat
Jakarta - Saat duduk di bangku Sekolah Menengah Atas SMA detikers pasti akan menemui pembelajaran persamaan kuadrat dalam matematika. Seperti apa contoh soal persamaan kuadrat?Persamaan kuadrat merupakan persamaan dalam matematika yang memiliki variabel paling tinggi berderajat dua. Persamaan kuadrat juga memiliki jenis-jenis yang dibedakan dari dari buku 'Bahas Total Kumpulan Soal Super Lengkap Matematika SMA; oleh Supadi, berikut ini penjelasan mengenai persamaan kuadrat, lengkap dengan contoh soal persamaan kuadrat dan Umum Persamaan KuadratPersamaan kuadrat adalah persamaan yang variabel tertingginya berderajat dua. Bentuk umum persamaan kuadrat adalahax² + bx + c = 0, dengan a, b, c, € R dan a ≠ 0Keterangan- x adalah variabel- a adalah koefisien dari x²- b adalah koefisien dan x- c adalah konstantaCara Menyelesaikan Persamaan KuadratUntuk menyelesaikan sebuah contoh soal persamaan kuadrat, detikers harus memahami tiga cara menyelesaikan persamaan kuadrat ax + bx+c= 0, yaitu1. memfaktorkan2. melengkapkan kuadrat, dan3. menggunakan rumus kuadrat rumus abc, yaituContoh Soal Persamaan Kuadrat dan Jawaban Materinya Foto ScreenshootdenganD = b² - 4ac D = diskriminanJenis Akar-Akar Persamaan KuadratSebelum menyelesaikan contoh persamaan kuadrat, diperlukan untuk mengetahui persamaan kuadrat ax² + bx + c = 0, dengan akar-akar x1 dan x2 yang sangat bergantung pada nilai diskriminan D.- D ≥ 0 → persamaan kuadrat mempunyai dua akar nyata real- D > 0 → persamaan kuadrat mempunyai dua buah akar nyata dan berbeda- D = 0 → persamaan kuadrat mempunyai dua buah akar nyata yang sama kembar- D 1⁄2d. m > 1⁄2 atau m - 1⁄2PembahasanPerhatikan konsep berikut kuadrat ax² + bx + c = 0 → akar-akar nyata dan berlainan jika D > + 2m - 1x - 2m = 0 → a = 1; b = 2m - 1, dan c = -2m. Memiliki akar-akar nyata dan berlainan berbeda, maka berlakuD > 02m -1² 4 . 1 . -2m > 04m² - 4m + 1 +8m > 04m² + 4m + 1 > 02m + 1² = 0Jadi, himpunan penyelesaian pertidaksamaan tersebut adalah m - 1⁄2. Jawaban E2 Akar-akar persamaan kuadrat ax² - 3ax + 5a-3 = 0 adalah x1 dan x2. Jikax13 dan x23 = 117, maka a² + a sama dengan...a. 4b. 3c. 2d. 1e. 0Pembahasanax² - 3ax + 5 a - 3 = 0 → a = a; b = -3a; c = 5a - 15maka diperolehContoh Soal Persamaan Kuadrat dan Jawaban Materinya Foto ScreenshootSubstitusi persamaan 1 dan ii ke persamaan berikut.x13 dan x23 = 117Contoh Soal Persamaan Kuadrat dan Jawaban Materinya Foto ScreenshootDari hasil tersebut, makaa² + a = 1² + 1= 2Jawaban contoh soal persamaan kuadrat beserta pembahasannya. Selamat belajar detikers! Simak Video "Kata IDI Soal Pemanggilan Dokter Tanpa Gelar " [GambasVideo 20detik] pay/pay
Tentukanlahpembuat nol dengan cara merubah tanda pertidaksamaan hingga menjadi. "sama dengan". Akar-akar persamaan kuadrat yang didapat yaitu pembuat nol. x2 + x - 6 = 0 , difaktorkan menjadi (x +3) (x-2) = 0. Pembuat nol dari persamaan tersebut bisa dicari dengan memakai cara ini. Pertama gunakan : x + 3 = 0. x = -3.
Persamaankuadrat memiliki beberapa jenisnya sehingga jenis akar persamaan berbentuk adalah: Jika D > 0, maka persamaan dalam kuadrat memiliki dua akar real ; Jika D = 0, Bentuk dari persamaan kuadrat dengan faktorisasi dari akar-akar yang berbeda diantaranya: No: Persamaan : Akar-akar: 1: x 2 + 4xy + y 2 = 0 (x + y) 2 = 0: 2: x 2 -5xy + y 4kycB.
  • 11vcznq51v.pages.dev/300
  • 11vcznq51v.pages.dev/307
  • 11vcznq51v.pages.dev/88
  • 11vcznq51v.pages.dev/378
  • 11vcznq51v.pages.dev/412
  • 11vcznq51v.pages.dev/103
  • 11vcznq51v.pages.dev/290
  • 11vcznq51v.pages.dev/14
  • jika a dan b adalah akar akar persamaan kuadrat